Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We study the properties of sub-Alfvénic magnetohydrodynamic (MHD) turbulence, i.e., turbulence with Alfvén mach numberMA=VL/VA< 1, whereVLis the velocity at the injection scale andVAis the Alfvén velocity. We demonstrate that MHD turbulence can have different properties, depending on whether it is driven by velocity or magnetic fluctuations. If the turbulence is driven by isotropic bulk forces acting upon the fluid, i.e., is velocity driven, in an incompressible conducting fluid we predict that the kinetic energy is times larger than the energy of magnetic fluctuations. This effect arises from the long parallel wavelength tail of the forcing, which excites modes withk∥/k⊥<MA. We also predict that as the MHD turbulent cascade reaches the strong regime, the energy of slow modes exceeds the energy of Alfvén modes by a factor . These effects are absent if the turbulence is driven through magnetic fluctuations at the injection scale. We confirm our predictions with numerical simulations. Since the assumption of magnetic and kinetic energy equipartition is at the core of the Davis–Chandrasekhar–Fermi (DCF) approach to measuring magnetic field strength in sub-Alfvénic turbulence, we conclude that the DCF technique is not universally applicable. In particular, we suggest that the dynamical excitation of long azimuthal wavelength modes in the galactic disk may compromise the use of the DCF technique. We discuss alternative expressions that can be used to obtain magnetic field strength from observations and consider ways of distinguishing the cases of velocity and magnetically driven turbulence using observational data.more » « lessFree, publicly-accessible full text available December 26, 2025
- 
            Abstract The mean plane-of-sky magnetic field strength is traditionally obtained from the combination of polarization and spectroscopic data using the Davis–Chandrasekhar–Fermi (DCF) technique. However, we identify the major problem of the DCF technique to be its disregard of the anisotropic character of MHD turbulence. On the basis of the modern MHD turbulence theory we introduce a new way of obtaining magnetic field strength from observations. Unlike the DCF technique, the new technique uses not the dispersion of the polarization angle and line-of-sight velocities, but increments of these quantities given by the structure functions. To address the variety of astrophysical conditions for which our technique can be applied, we consider turbulence in both media with magnetic pressure higher than the gas pressure, corresponding, e.g., to molecular clouds, and media with gas pressure higher than the magnetic pressure, corresponding to the warm neutral medium. We provide general expressions for arbitrary admixtures of Alfvén, slow, and fast modes in these media and consider in detail particular cases relevant to diffuse media and molecular clouds. We successfully test our results using synthetic observations obtained from MHD turbulence simulations. We demonstrate that our differential measure approach, unlike the DCF technique, can be used to measure the distribution of magnetic field strengths, can provide magnetic field measurements with limited data, and is much more stable in the presence of induced large-scale variations of nonturbulent nature. Furthermore, our study uncovers the deficiencies of earlier DCF research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
